Article ID Journal Published Year Pages File Type
1290927 Journal of Power Sources 2007 6 Pages PDF
Abstract

Examined were the effects of the clamping pressure on the performance of a proton exchange membrane (PEM) fuel cell. The electro-physical properties of the gas diffusion layer (GDL) such as porosity, gas permeability, electrical resistance and thickness were measured using a special-designed test rig under various clamping pressure levels. Correlations for the gas permeability of the GDL were developed in terms of the clamping pressure. In addition, the contact resistance between the GDL and the bipolar (graphite) plate was measured under various clamping pressures. Results showed that at the low clamping pressure levels (e.g. <5 bar) increasing the clamping pressure reduces the interfacial resistance between the bipolar plate and the GDL that enhances the electrochemical performance of a PEM fuel cell. In contrast, at the high clamping pressure levels (e.g. >10 bar), increasing the clamping pressure not only reduces the above Ohmic resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers. Comprising the above two effects did not promote the power density too much but reduce the mass-transfer limitation for high current density.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,