Article ID Journal Published Year Pages File Type
1291214 Journal of Power Sources 2009 4 Pages PDF
Abstract

Novel Li–Ti–Si–P–O–N thin-film electrolyte was successfully fabricated by RF magnetron sputtering from a Li–Ti–Si–P–O target in N2 atmosphere at various temperatures. XRD, SEM, EDX, XPS, and EIS were employed to characterize their structure, morphology, composition and electrochemical performances. The films were smooth, dense, uniform, without cracks or voids, and possessed an amorphous structure. Their room temperature lithium-ion conductivities were measured to be from 3.6 × 10−7 S cm−1 to 9.2 × 10−6 S cm−1, and the temperature dependence of the ionic conductivities fits the Arrhenius relation. This kind of electrolyte possessed good properties is a promising candidate material for solid-state thin-film lithium batteries.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,