Article ID Journal Published Year Pages File Type
1291372 Journal of Power Sources 2007 6 Pages PDF
Abstract

A simple and cost-effective gel-casting technique is developed and optimized to fabricate NiO/stabilized yttria–zirconia (YSZ) anode-supported solid oxide fuel cells (SOFCs). The effect of ammonium poly-(methacrylate) (PMAA) dispersant and pH on the zeta potential of YSZ and NiO particles and the viscosity of the NiO/YSZ slurries is studied in detail. The results show that the absolute zeta potential of YSZ and NiO particles reaches a maximum value at pH value ∼10 and the viscosity of the NiO/YSZ slurry is lowest when the PMAA dispersant content is 1.5 wt.%. A gel-cast NiO/YSZ anode-supported button cell with a spin-coated, thin, YSZ electrolyte film (∼9 μm) and a La0.72Sr0.18MnO3−δ (LSM)/YSZ composite cathode gives a peak power output of 1.07 and 0.65 W cm−2 at 900 and 800 °C under humidified hydrogen and air. The effect of a graphite pore-former in the gelation and microstructure of NiO/YSZ anode substrates is investigated.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,