Article ID Journal Published Year Pages File Type
1291490 Journal of Power Sources 2008 6 Pages PDF
Abstract

We have realized a novel hydrogen peroxide fuel cell that uses hydrogen peroxide (H2O2) as both an electron acceptor (oxidant) and a fuel. H2O2 is oxidized at the anode and reduced at the cathode. Power generation is based on the difference in catalysis toward H2O2 between the anode and cathode. The anode catalyst oxidizes H2O2 at a more negative potential than that at which the cathode catalyst reduces H2O2. We found that Ag is suitable for use as a cathode catalyst, and that Au, Pt, Pd, and Ni are desirable for use as anode catalysts. Alkaline electrolyte is necessary for power generation. The performance of this cell is clearly explained by cyclic voltammograms of H2O2 at these electrodes. This cell does not require a membrane to separate the anode and cathode compartments. Furthermore, separate paths are not needed for the fuel and electron acceptor (oxidant). These properties make it possible to construct fuel cells with a one-compartment structure.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,