Article ID Journal Published Year Pages File Type
1291526 Journal of Power Sources 2008 11 Pages PDF
Abstract

Large PEM cells will be used in future proton exchange membrane fuel cell (PEMFC) power plants and appropriate tools are therefore be needed to study their behaviour. One approach to understanding single cell behaviour involves using mathematical models. The numerous techniques used in this work to describe PEM electrode behaviour require different scientific disciplines: chemical engineering and electrochemistry. This study proposes combining residence time distribution (RTD) and electrochemical impedance spectroscopy (EIS). The investigation focuses on cathodic DC and AC responses where over-voltage is critical. Results demonstrate that although gas distribution does not cause additional loops on impedance diagrams, it is strongly related to both the shape and amplitude of these diagrams. The simulations have drawn attention to operating conditions that can threaten the life of the PEM cell: under these setting points EIS method is not sufficient to detect this risk.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
,