Article ID Journal Published Year Pages File Type
1291638 Journal of Power Sources 2007 10 Pages PDF
Abstract

Polymer electrolyte membrane fuel cell (PEMFC) technology has advanced rapidly in recent years, with one of active area focused on improving the long-term performance of carbon supported catalysts, which has been recognized as one of the most important issues to be addressed for the commercialization of the PEMFCs. The cathode catalyst layer in PEMFCs typically contains platinum group metal/alloy nanoparticles supported on a high-surface-area carbon. Carbon support corrosion and Pt dissolution/aggregation are considered as the major contributors to the degradation of the Pt/C catalysts. If the platinum particles cannot maintain their structure over the lifetime of the fuel cell, change in the morphology of the catalyst layer from the initial state will result in a loss of electrochemical activity. This paper reviews the recent advances in the stability improvement of the Pt/C cathodic catalysts in PEMFC, especially focusing on the durability enhancement through the improved Pt–C interaction. Future promising strategies towards the extension of catalysts operation life are also prospected.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,