Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1291696 | Journal of Power Sources | 2007 | 4 Pages |
Ammonia is a possible candidate as the fuel for solid oxide fuel cells (SOFCs). In this work, an anode-supported SOFC based on yttrium-stabled zircite (YSZ) thin-film electrolyte was fabricated by a simple dry-pressing process. Directly fueled by commercial liquefied ammonia, the single cell was tested at temperatures from 650 to 850 °C. The maximum power densities were 299 and 526 mW cm−2 at 750 and 850 °C, respectively, only slightly lower than that fueled by hydrogen. Analysis of open current voltages (OCVs) of the cell indicated the oxidation of ammonia within a SOFC is a two-stage process. Impedance spectra showed the cell fueled by ammonia had the same electrolyte resistances as that fueled by hydrogen, but a little larger interfacial polarization resistances. Further, the performances of the cell were essentially determined by the interfacial resistances under 750 °C.