Article ID Journal Published Year Pages File Type
1291702 Journal of Power Sources 2007 11 Pages PDF
Abstract

Achieving uniform flow among the cells of a fuel cell stack plays a significant role in being able to operate at maximum capability and efficiency. This paper presents experimental data showing the importance of cell-to-cell fuel flow balancing on fuel cell performance, and a fuel cell energy management (FCEM) technique that has demonstrated the ability to improve stack performance. In a specially instrumented four-cell polymer electrolyte fuel cell that allows external control of the air, fuel, and water-cooling flows to each cell, fuel to a single cell was reduced. V–I curves collected under these unbalanced conditions are compared to curves collected when the fuel flow to each cell was balanced. Reducing the fuel flow to a single cell by 11% decreased the V–I curve cutoff load by 10%—demonstrating the degree of negative effect that unbalanced fuel flows can have on stack performance. Typical fuel cell stacks have no dynamic means to keep flows in the stack balanced between the cells, but through the use of custom-built, piezoelectric micro-valves, a simple flow control strategy, and this custom four-cell laboratory stack, the positive effects of FCEM flow balancing at three different fuel flow rates was demonstrated.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,