Article ID Journal Published Year Pages File Type
1291738 Journal of Power Sources 2007 5 Pages PDF
Abstract

In this paper, a nickel hydroxide/activated carbon (AC) composite electrode for use in an electrochemical capacitor was prepared by a simple chemical precipitation method. The structure and morphology of nickel hydroxide/AC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that nano-sized nickel hydroxide was loading on the surface of activated carbon. Electrochemical performance of the composite electrodes with different loading amount was studied by cyclic voltammetry and galvanostatic charge/discharge measurements. It was demonstrated that the introduction of a small amount of nickel hydroxide to activated carbon could promote the specific capacitance of a composite electrode. The composite electrodes have good electrochemical performance and high charge–discharge properties. Moreover, when the loading amount of nickel hydroxide was 6 wt.%, the composite electrode showed a high specific capacitance of 314.5 F g−1, which is 23.3% higher than pure activated carbon (255.1 F g−1). Also, the composite electrochemical capacitor exhibits a stable cyclic life in the potential range of 0–1.0 V.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,