Article ID Journal Published Year Pages File Type
1291943 Journal of Power Sources 2007 9 Pages PDF
Abstract

In this study, we deal with the exergoeconomic analysis of a proton exchange membrane (PEM) fuel cell power system for transportation applications. The PEM fuel cell performance model, that is the polarization curve, is previously developed by one of the authors by using the some derived and developed equations in literature. The exergoeconomic analysis includes the PEM fuel cell stack and system components as compressor, humidifiers, pressure regulator and the cooling system. A parametric study is also conducted to investigate the system performance and cost behaviour of the components, depending on the operating temperature, operating pressure, membrane thickness, anode stoichiometry and cathode stoichiometry. For the system performance, energy and exergy efficiencies and power output are investigated in detail. It is found that with an increase of temperature and pressure and a decrease of membrane thickness the system efficiency increases which leads to a decrease in the overall production cost. The minimization of the production costs is very crucial in commercialization of the fuel cells in transportation sector.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,