Article ID Journal Published Year Pages File Type
1292571 Journal of Power Sources 2006 4 Pages PDF
Abstract

Here we reported an effective method to prepare TiO2/C core–shell nanocomposites as active anode materials for lithium ion batteries with markedly ameliorated electrochemical performance. At first, a precursor, polyacrylonitrile coated nano-TiO2 particles, was formed by emulsion polymerization. Then the precursor was heat-treated under argon atmosphere to achieve the nanocomposites. The conductive carbon shell enveloped TiO2 nanoparticles and suppressed the aggregation of nanoparticles during cycling. Meanwhile, it combined closely with the nanocores, significantly enhanced kinetics of lithium intercalation and de-intercalation and diffusion coefficient of lithium ion. This provides a good way to improve the cycling and kinetics of nanoanode materials.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,