Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1293547 | Journal of Power Sources | 2011 | 4 Pages |
An amorphous Fe-based catalyst supported on polypyrrole-modified carbon nanotubes is synthesized by a chemical method. The microstructure, surface composition and morphology are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The synthesized amorphous Fe-based catalyst is composed of amorphous FeOOH and microcrystalline Fe2O3. Compared with a crystalline FeOOH catalyst, the amorphous Fe-based catalyst demonstrates higher electrocatalytic activity toward the oxygen reduction reaction (ORR), due to its amorphous structure and large specific surface area. It is considered that amorphization of transition metal compounds could be one of the methods used to improve their catalytic activity toward the ORR.