Article ID Journal Published Year Pages File Type
1293886 Journal of Power Sources 2010 4 Pages PDF
Abstract

A novel layered perovskite oxide PrBaCuCoO5+δ (PBCCO) is employed as a potential cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Thermal expansion and electrochemical performance on samarium-doped ceria (SDC) electrolyte are evaluated. The thermal expansion coefficient (TEC) of PrBaCuCoO5+δ (PBCCO) is close to that of SDC electrolyte and electrical conductivity of PrBaCuCoO5+δ (PBCCO) reaches the general required value of cathode material. Symmetrical electrochemical cell with the configuration of PrBaCuCoO5+δ (PBCCO)/SDC/PrBaCuCoO5+δ (PBCCO) applied for the impedance studies, the area specific resistance of PrBaCuCoO5+δ (PBCCO) cathode is as low as 0.047 Ω cm2 at 700 °C. A maximum power density of 791 mW cm−2 is obtained at 700 °C for the single cell consisting of PrBaCuCoO5+δ (PBCCO)/SDC/NiO–SDC. Preliminary results indicate that PrBaCuCoO5+δ (PBCCO) is especially promising as a cathode for IT-SOFCs.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , , , ,