Article ID Journal Published Year Pages File Type
1294008 Journal of Power Sources 2009 6 Pages PDF
Abstract

La0.84Sr0.16MnO3−δ–Bi1.4Er0.6O3 (LSM–ESB) composite cathodes are fabricated by impregnating LSM electronic conducting matrix with the ion-conducting ESB for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The performance of LSM–ESB cathodes is investigated at temperatures below 750 °C by AC impedance spectroscopy. The ion-impregnation of ESB significantly enhances the electrocatalytic activity of the LSM electrodes for the oxygen reduction reactions, and the ion-impregnated LSM–ESB composite cathodes show excellent performance. At 750 °C, the value of the cathode polarization resistance (Rp) is only 0.11 Ω cm2 for an ion-impregnated LSM–ESB cathode, which also shows high stability during a period of 200 h. For the performance testing of single cells, the maximum power density is 0.74 W cm−2 at 700 °C for a cell with the LSM–ESB cathode. The results demonstrate the ion-impregnated LSM–ESB is one of the promising cathode materials for intermediate-temperature solid oxide fuel cells.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,