Article ID Journal Published Year Pages File Type
1294077 Journal of Power Sources 2009 7 Pages PDF
Abstract

LiBH4–MgH2 is an attractive reversible hydrogen storage system, it combines two high capacity hydrides (18.3 and 7.6 wt.%, respectively) and the concerted dehydrogenation reaction has a smaller enthalpy change than either species on its own. The latter effect leads to a destabilisation of the hydrided products and results in a lowering of the dehydrogenation temperature. In situ neutron diffraction experiments have been undertaken to characterise the mechanism of decomposition of the LiBD4–MgD2 system, with an emphasis on investigating the synergistic effects of the components during cycling under various conditions. This study compares the effect of stoichiometry of the multicomponent system on the cycling mechanism. Results show that LiBD4–MgD2 in a 2:1 molar ratio can be reversibly dehydrogenated under low pressures of hydrogen or under vacuum, contrary to earlier reports in the literature, although the reaction was only partially reversed for the 2:1 mixture decomposed under vacuum. This work shows that the reaction pathway was affected by dehydrogenation conditions, but the stoichiometry of the multicomponent system played a minor role.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,