Article ID Journal Published Year Pages File Type
1294089 Journal of Power Sources 2009 5 Pages PDF
Abstract

Electrospinning is a versatile method for preparation of submicron-size fibers under ambient temperature. We demonstrate a new approach based on this method for preparing an electrode which consists of the fibers coated with nickel oxide (NiO) and acetylene black (AB) on their surfaces. The NiO/polymer fibrous electrodes show the electrochemical responses based on the electrochemical reaction of Ni(OH)2 which is produced from NiO in alkaline aqueous solution. The capacitance of the test half cell with the as-prepared NiO/polymer fibrous electrode in 1 mol l−1 KOH aqueous solution is 5.8 F g−1 (per gram of NiO). Heat treatment (at 150 °C for 1 h in the air) of the NiO/polymer fibrous electrode increases the capacitance of the NiO/polymer fibrous electrode. The capacitance of the cell with the heat treated (HT) NiO/polymer fibrous electrode is 163 F g−1 (per gram of NiO). SEM observation of the heat treated electrode suggests that partial melt of the fibers on the current collector forms the conducting passes and networks between the NiO particles and the collector and increases the specific capacity of the fibrous electrode.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,