Article ID Journal Published Year Pages File Type
1294161 Journal of Power Sources 2009 6 Pages PDF
Abstract

LiV3O8, synthesized from V2O5 and LiOH, by heating of a suspension of V2O5 in a LiOH solution at a low-temperature (100–200 °C), exhibits a high discharge capacity and excellent cyclic stability at a high current density as a cathode material of lithium-ion battery. The charge-discharge curve shows a maximum discharge capacity of 228.6 mAh g−1 at a current density of 150 mA g−1 (0.5 C rate) and the 100 cycles discharge capacity remains 215 mAh g−1. X-ray diffraction indicates the low degree of crystallinity and expanding of inter-plane distance of the LiV3O8 phase, and scanning electronic microscopy reveals the formation of nano-domain structures in the products, which account for the enhanced electrochemical performance. In contrast, the LiV3O8 phase formed at a higher temperature (300 °C) consists of well-developed crystal phases, and coherently, results in a distinct reduction of discharge capacity with cycle numbers. Thus, an enhanced electrochemical performance has been achieved for LiV3O8 by the soft chemical method via a low-temperature heating process.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,