Article ID Journal Published Year Pages File Type
1294502 Journal of Power Sources 2008 4 Pages PDF
Abstract

LiFePO4/C composite cathode material was prepared by carbothermal reduction method, which uses NH4H2PO4, Li2CO3 and cheap Fe2O3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO4 composites showed a high electrochemical capacity of 159.3 mAh g−1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,