Article ID Journal Published Year Pages File Type
1294510 Journal of Power Sources 2008 5 Pages PDF
Abstract

The use of ionic liquid (IL)-supported organic radicals as cathode-active materials in lithium secondary batteries is reported in this article. Two different types of IL-supported organic radicals based on the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radical and imidazolium hexafluorophosphate IL were synthesized. The first type is a mono-radical with one unit of TEMPO and the second is a symmetrical di-radical with 2 U of TEMPO; both are viscous liquids at 25 °C. The radicals exhibit electrochemical activity at ∼3.5 V versus Li/Li+ as revealed in the cyclic voltammetry tests. The organic radical batteries (ORBs) with these materials as the cathode, a lithium metal anode and 1 M LiPF6 in EC/DMC electrolyte exhibited good performance at room temperature during the charge–discharge and cycling tests. The batteries exhibited specific capacities of 59 and 80 mAh g−1 at 1 C-rate with the mono- and di-radicals as the cathodes, respectively, resulting in 100% utilization of the materials. The performance degradation with increasing C-rate is very minimal for the ORBs, thus demonstrating good rate capability.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , , ,