Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1294573 | Journal of Power Sources | 2008 | 8 Pages |
A novel modeling scheme of SOFC anode based on the stochastic reconstruction technique and the Lattice Boltzmann Method (LBM) is proposed and applied to the performance assessment and also to the optimization of anode microstructures. A cross-sectional microscopy image is exploited to obtain a two-dimensional phase map (i.e., Ni, YSZ and pore), of which two-point correlation functions are used to reconstruct a three-dimensional model microstructure. Then, the polarization resistance of the reconstructed anode is obtained by the LBM simulation. The predicted anodic polarization resistance for a given microstructure and its sintering temperature dependence are in good agreement with the literature data. Three-dimensional distributions of potential and current can be obtained, while and the effect of working temperature is discussed. The proposed method is considered as a promising tool for designing SOFC anodes.