Article ID Journal Published Year Pages File Type
1294911 Journal of Power Sources 2007 9 Pages PDF
Abstract

Steam reforming of methanol is investigated numerically considering both heat and mass transfer of the species in a packed bed microreactor. The numerical results are shown to be in good agreement with experimental data [M.T. Lee, R. Greif, C.P. Grigoropoulos, H.G. Park, F.K. Hsu, J. Power Sources Transport in, 166 (2007) 194–201] with a BASF F3-01(CuO/ZnO/Al2O3) catalyst. A correlation for the conversion efficiency of methanol has been obtained as a function of the operating temperature and a dimensionless time parameter which represents the ratio of the characteristic time of the methanol flow to the time for chemical reaction. The results show that for the constant wall temperature condition the steam reforming process of methanol results in a nearly uniform temperature throughout the microreactor over the range of operating conditions.

Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,