Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1305220 | Inorganic Chemistry Communications | 2016 | 4 Pages |
•FLTC could specifically detect Hg2 +.•FLTC·Hg2 + complex shows highly selective and sensitive for Ag+.•FLTC·Hg2 + complex has a low detection limit of 0.009 μM for Ag+.•FLTC can be used as a fluorescent probe to detect Hg2 + and Ag+ in human liver cells.
FLTC was synthesized and used as a fluorescent chemosensor to detect Hg2 +. It showed high selectivity toward Hg2 + over many heavy metal ions in an ethanol–H2O (3:2, v/v, HEPES buffer, 0.5 mM, pH 7.15) solution with a detection limit of 0.21 μM. After complexation with Hg2 +, FLTC showed extremely high selectivity toward Ag+ with a detection limit of 0.009 μM. Therefore, detection of Hg2 + and Ag+ could be realized using FLTC and the FLTC–Hg2 + complex, respectively. Cytotoxicity assays and fluorescence microscopy analysis showed that FLTC could be used as a fluorescent probe to detect Hg2 + and Ag+ in L-02 human liver cells.
Graphical abstractFLTC was synthesized and used as a fluorescent chemosensor to detect Hg2 +. It showed high selectivity toward Hg2 + over many heavy metal ions in an ethanol–H2O (3:2, v/v, HEPES buffer, 0.5 mM, pH 7.15) solution with a detection limit of 0.21 μM. After complexation with Hg2 +, FLTC showed extremely high selectivity toward Ag+ with a detection limit of 0.009 μM. Therefore, detection of Hg2 + and Ag+ could be realized using FLTC and the FLTC–Hg2 + complex, respectively. Cytotoxicity assays and fluorescence microscopy analysis showed that FLTC could be used as a fluorescent probe to detect Hg2 + and Ag+ in L-02 human liver cells.Figure optionsDownload full-size imageDownload as PowerPoint slide