Article ID Journal Published Year Pages File Type
13408190 Forest Ecology and Management 2020 8 Pages PDF
Abstract
Soil phosphorus (P) availability and its distribution influence plant growth and productivity. To evaluate strategies that allow genotypes to be efficient under variable P environments, we planted six hybrid Populus deltoides clones belonging to the section Aigeiros (Aig), LL1, LL9, NL351, NL35, NL1388 and NL895, to three growth conditions in a greenhouse experiment, including low P, a high homogenous P supply and a high heterogeneous P supply. Functional traits, including foliar and root traits as well as rhizosphere processes, were measured. Large genotypic variation in shoot biomass and leaf P concentration was found in response to the P supply level and pattern. Compared with no P supply, LL1, LL9 and NL895 had a greater root length, biomass and P concentration in leaves under a homogenous P supply, while growth traits of NL351, NL35 and NL1388 were not significantly affected. A heterogeneous P supply enhanced the shoot biomass of LL1 and LL9. The root proliferation of LL1 and LL9 in P-rich patches was related to increased P acquisition in leaves. By contrast, a heterogeneous P supply did not enhance the biomass accumulation and the morphological plasticity of roots in other four genotypes, NL351, NL35, NL895 and NL1388, in P-rich patches. We found that functional traits or rhizosphere processes under low P could predict high P performance in Populus clones. Genotypes with a higher specific root length under low P can accumulate a larger biomass under a homogenous P supply. Conversely, high acid phosphatase concentrations decreased the positive impact of a heterogeneous P supply on a genotype's performance. Our results provide implications and applications for silviculture and forest management.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,