Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
13418516 | Applied Energy | 2020 | 15 Pages |
Abstract
A new SOC estimation method is proposed based on a reduced-order electrochemical model using an adaptive square-root sigma-point Kalman filter (ASR-SPKF) with equality state constraints. The constraints derived from the principle of charge conservation are introduced to improve the accuracy of both anode and cathode SOC estimations. Furthermore, the cathode SOC is estimated to represent the cell SOC for its fast convergence speed, which is due to the high magnitude of the cathode equilibrium potential. Approaches used to adaptively updating the covariance parameters of the filter based on the covariance matching method are also incorporated. As a result, the covariance matrix of process noise is adjusted automatically. Comparative studies of three nonlinear filters concerning estimation accuracy, error bounds, recovery time from an initial offset, and computational time revealed that the ASR-SPKF has the most outstanding performance. That is, 30% more accurate and 88% shorter the convergence time than the AEKF, and, computationally, 23% and 19% faster than the AEKF and ASPKF, respectively. Then, the proposed method was tested at different temperatures using a large-format lithium-ion battery with a nominal capacity of 42â¯Ah where the voltage and SOC error remained less than 22â¯mV and 2%, respectively. Finally, the proposed method was implemented in a battery-in-the-loop test station using a fast charging and a driving cycle profile, and the estimated voltage and SOC were compared with the experimental results.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Yalan Bi, Song-Yul Choe,