Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1363677 | Bioorganic & Medicinal Chemistry Letters | 2009 | 4 Pages |
A series of 2- and 3-aryl substituted indoles and two 1,3,4,5-tetrahydropyrano[4,3-b]indoles were synthesized from indole and 5-methoxyindole. The 2-aryl indoles were synthesized from the 1-(phenylsulfonyl)indole derivatives using magnesiation followed by iodination. The 2-iodinated compounds were then subjected to Suzuki–Miyaura reactions. In addition, the 3-aryl indoles were made from the corresponding 3-bromoindoles using Suzuki–Miyaura reactions. The 1,3,4,5-tetrahydropyrano[4,3-b]indoles were also synthesized from 1-(phenylsulfonyl)indole by magnesiation followed by treatment with allylbromide. The product was then converted into [2-allyl-1-(phenylsulfonyl)-1H-indol-3-yl]methanol which upon exposure to Hg(OAc)2 and NaBH4 afforded tetrahydropyrano[4,3-b]indoles. A number of the 2- and 3-aryl indoles displayed noteworthy antimicrobial activity, with compound 13a displaying the most significant activity (3.9 μg/mL) against the Gram-positive micro-organism Bacillus cereus.
Graphical abstractA series of 2- and 3-aryl substituted indoles and two 1,3,4,5-tetrahydropyrano[4,3-b]indoles were synthesized from indole and 5-methoxyindole. Some of the 2- and 3-aryl substituted indoles displayed significant antibacterial and antifungal activity.Figure optionsDownload full-size imageDownload as PowerPoint slide