Article ID Journal Published Year Pages File Type
1364170 Bioorganic & Medicinal Chemistry Letters 2009 5 Pages PDF
Abstract

As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-pyridyl)pyrimidines as potential anticancer agents, we explored replacing the 2-pyridyl group by other aryl groups. SAR studies showed that the 2-pyridyl group can be replaced by a 3-pyridyl, 4-pyridyl and 2-pyrazinyl group, and that the SAR for the anilino group was similar to that of the 2-pyridyl series. However, replacement of the 2-pyridyl group by a phenyl group, a 3,5-dichloro-4-pyridyl group, or a saturated ring led to inactive compounds. Several potent compounds, including 2f, 3d, 3j and 4a, with EC50 values of 0.048–0.024 μM in the apoptosis induction assay against T47D cells, were identified through the SAR studies. In a tubulin polymerization assay, compound 2f, which was active against all the three cell lines tested (T47D, HTC116 and SNU398), inhibited tubulin polymerization with an IC50 value of 0.5 μM, while compound 2a, which was active against T47D cells but not active against HTC116 and SNU398 cells, was not active in the tubulin assay at up to 50 μM.

Graphical abstractThe synthesis and SAR studies of the 2-aryl group of 4-anilino-2-arylpyrimidines as novel apoptosis inducers are reported.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , ,