| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1365192 | Bioorganic & Medicinal Chemistry Letters | 2008 | 5 Pages |
Orally bioavailable, dual inhibitors of TIE-2/VEGF-R2 were identified by elaborating the C3/N13 SAR around a fused pyrrolodihydroindazolocarbazole scaffold. Analogs bearing a C3-thiophencarbonyl group were evaluated in enzymatic and cellular biochemical assays; two orally bioavailable analogs were further profiled in functional assays and found to inhibit microvessel growth in rat aortic explant cultures and inhibit Ang-1-stimulated chemotaxis of HUVECs.
Graphical abstractOrally bioavailable, dual inhibitors of TIE-2/VEGF-R2 were identified by elaborating the C3/N13 SAR around a fused pyrrolodihydroindazolocarbazole scaffold. Analogs bearing a C3-thiophencarbonyl group were evaluated in enzymatic and cellular biochemical assays; two orally bioavailable analogs were further profiled in functional assays and found to inhibit microvessel growth in rat aortic explant cultures and inhibit Ang-1-stimulated chemotaxis of HUVECs.Figure optionsDownload full-size imageDownload as PowerPoint slide
![First Page Preview: TIE-2/VEGF-R2 SAR and in vitro activity of C3-acyl dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazole analogs TIE-2/VEGF-R2 SAR and in vitro activity of C3-acyl dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazole analogs](/preview/png/1365192.png)