Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1365533 | Bioorganic & Medicinal Chemistry Letters | 2007 | 5 Pages |
A lysate-based thermostability and activity profile is described for chloramphenicol acetyltransferase (CAT) expressed in trifluoroleucine, T (CAT T). CAT and 13 single-isoleucine CAT mutants were expressed in medium supplemented with T and assayed for thermostability on cell lysates. Although fluorinated mutants, L82I T and L208I T, showed losses in thermostability, the L158I T fluorinated mutant demonstrated an enhanced thermostability relative to CAT T. Further characterization of L158I T suggested that T at position 158 contributed to a portion of the observed loss in thermostability upon global fluorination.
Graphical abstractA lysate-based thermostability and activity profile is described for chloramphenicol acetyltransferase (CAT) expressed in trifluoroleucine, T (CAT T). CAT and 13 single-isoleucine CAT mutants were expressed in medium supplemented with T and assayed for thermostability.Figure optionsDownload full-size imageDownload as PowerPoint slide