Article ID Journal Published Year Pages File Type
1366387 Bioorganic & Medicinal Chemistry Letters 2007 5 Pages PDF
Abstract

The design, synthesis, and antiplasmodial activity of antimalarial heterodimers based on the 1,4-bis(3-aminopropyl)piperazine linker is reported. In this series key structural elements derived from quinoline antimalarials were coupled to fragments capable of coordinating metal ions. Biological evaluation included determination of activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. Some of the novel compounds presented high activity in vitro against chloroquine-resistant strains, more potent than chloroquine and clotrimazole. Computational studies revealed that the activity is likely due to the ability of the compounds to assume a multisite iron coordinating geometry.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , , , , , , ,