Article ID Journal Published Year Pages File Type
1371385 Bioorganic & Medicinal Chemistry Letters 2010 4 Pages PDF
Abstract

Recent advances in the structural study of fatty acid synthase (FAS) and polyketide synthase (PKS) biosynthetic enzymes have illuminated our understanding of modular enzymes of the acetate pathway. However, one significant and persistent challenge in such analyses is resolution of the acyl carrier protein (ACP), a small (∼9 kDa) protein to which biosynthetic intermediates are tethered throughout the biosynthetic cycle. Here we report a chemoenzymatic crosslinking strategy in which the installation of a historical suicide substrate scaffold upon the 4′-phosphopantetheine (PPant) arm of the ACP is used to capture the active site of acyl carrier protein dehydratase (DH) domains in FAS. Through the synthesis of a small panel of related probes we identify structural features essential for ACP–DH crosslinking, and apply gel-based assays to demonstrate the stability as well as purification strategies for isolation of the chemoenzymatically modified ACP. Applying these carrier protein crosslinking techniques to the structural analysis of FAS and PKS complexes has the potential to provide snapshots of these biosynthetic assembly lines at work.

Graphical abstractA chemoenzymatic method for the crosslinking of protein partners of the fatty acid biosynthetic pathway is detailed.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,