Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1373166 | Bioorganic & Medicinal Chemistry Letters | 2011 | 5 Pages |
Aldo-keto reductase 1C3 (AKR1C3) also known as type 5 17β-hydroxysteroid dehydrogenase has been implicated as one of the key enzymes driving the elevated intratumoral androgen levels observed in castrate resistant prostate cancer (CRPC). AKR1C3 inhibition therefore presents a rational approach to managing CRPC. Inhibitors should be selective for AKR1C3 over other AKR1C enzymes involved in androgen metabolism. We have synthesized 2-, 3-, and 4-(phenylamino)benzoic acids and identified 3-(phenylamino)benzoic acids that have nanomolar affinity and exhibit over 200-fold selectivity for AKR1C3 versus other AKR1C isoforms. The AKR1C3 inhibitory potency of the 4′-substituted 3-(phenylamino)benzoic acids shows a linear correlation with both electronic effects of substituents and the pKa of the carboxylic acid and secondary amine groups, which are interdependent. These compounds may be useful in treatment and/or prevention of CRPC as well as understanding the role of AKR1C3 in endocrinology.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide