Article ID Journal Published Year Pages File Type
1374388 Bioorganic & Medicinal Chemistry Letters 2006 5 Pages PDF
Abstract

Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. This study reports on the discovery of a new triketoacid-based chemotype that selectively inhibits the strand transfer reaction of HIV-integrase. SAR studies showed that the template binds to integrase in a manner similar to the diketoacid-based inhibitors. Moreover, comparison of the new chemotype to two different diketoacid templates led us to propose two aryl-binding domains in the inhibitor binding site. This information was used to design a new diketoacid template with improved activity against the enzyme.

Graphical abstractThis study reports on the discovery of a new triketoacid-based chemotype that selectively inhibits the strand transfer reaction of HIV-integrase. SAR studies showed that the template binds to integrase in a manner similar to the diketoacid-based inhibitors. Moreover, comparison of the new chemotype to two different diketoacid templates led us to propose two aryl-binding domains in the inhibitor binding site. This information was used to design a new diketoacid template with improved activity against the enzyme.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , , , , , , , , ,