Article ID Journal Published Year Pages File Type
1377419 Bioorganic & Medicinal Chemistry Letters 2007 7 Pages PDF
Abstract

Extensive SAR studies and optimization of ADME properties of benzimidazol-2-one derivatives led to the identification of BMS-433771 (3) as an orally active RSV fusion inhibitor. In order to extend the structure–activity relationships for this compound series, substitution of the benzimidazole ring was examined with a view to establishing additional productive interactions between the inhibitor and functionality present in the proposed binding pocket. Amongst the compounds synthesized, the 5-aminomethyl analogue 10aa demonstrated potent antiviral activity towards wild-type RSV and retained excellent inhibitory activity towards a virus that had been developed to express resistance to BMS-433771 (3), data consistent with an additional productive interaction between the inhibitor and the fusion protein target.

Graphical abstractExtensive SAR studies and optimization of ADME properties of benzimidazol-2-one derivatives led to the identification of BMS-433771 (3) as an orally active RSV fusion inhibitor. In order to extend the structure–activity relationships for this compound series, substitution of the benzimidazole ring was examined with a view to establishing additional productive interactions between the inhibitor and functionality present in the proposed binding pocket. Amongst the compounds synthesized, the 5-aminomethyl analogue 10aa demonstrated potent antiviral activity towards wild-type RSV and retained excellent inhibitory activity towards a virus that had been developed to express resistance to BMS-433771 (3), data consistent with an additional productive interaction between the inhibitor and the fusion protein target.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , , , , , ,