Article ID Journal Published Year Pages File Type
146516 Chemical Engineering Journal 2015 11 Pages PDF
Abstract

•Low-cost carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams.•Temperature swing adsorption in CO2/H2 and CO2/CH4 binary mixtures was measured.•Breakthrough tests showed selectivity to separate CO2 from CO2/H2 and CO2/CH4 mixtures.•Best volumetric CO2 uptake and CO2/CH4 selectivity by a biomass-derived adsorbent.

The biological production of H2 by dark fermentation is being extensively investigated due to the great potential of the two-phase hydrogen/methane fermentation process for recovering energy from carbohydrate-rich wastes. However, the purification of the bio-hydrogen and biogas obtained is needed to produce high-purity H2 and CH4 streams appropriate for industrial application. In this study, the performance of three activated carbons (No1KCla-600, No1KClb-1000 and No2OS-1000), synthesized from phenol–formaldehyde resins, as potential adsorbents for CO2 capture from bio-hydrogen and biogas streams has been evaluated under dynamic conditions. Adsorption–desorption cycles by means of temperature swings were conducted at ambient temperature and atmospheric pressure with CO2/H2 (40/60 and 70/30 vol.%) and CO2/CH4 (50/50 vol.%) binary gas mixtures in a purpose-built fixed-bed set-up. The performance of the resin-derived carbons to separate CO2 was superior to that of reference commercial carbons in terms of CO2 uptake, breakthrough time and column efficiency. These adsorbents presented high CO2/H2 and CO2/CH4 selectivity values, were easily completely regenerated and did not show capacity decay after multiple cycling. Breakthrough capacities reached 2.11 and 2.03 mmol g−1 at 25 °C for 70/30 CO2/H2 and 50/50 CO2/CH4, respectively. The No2OS-1000 adsorbent, produced from phenol–formaldehyde resin and olive stones (20:80 wt.), gave the greatest values of CO2 capture capacity on a volumetric basis and CO2/CH4 selectivity, which may be advantageous to biogas purification applications because it reduces the size of the necessary equipment.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,