Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
147842 | Chemical Engineering Journal | 2014 | 9 Pages |
•Silica hollow flowers were synthesized via novel apatite template sol–gel route.•Their shells were constructed by numerous silica hollow nanosheets.•They can serve as sustained release system for BMP-2.•The released BMP-2 was biologically active to stimulate cell differentiation.
Novel silica hollow flowers (1–5 μm) were synthesized using globular apatite flowers as sacrificed template via a sol–gel route and then employed as biocompatible carrier of bone morphogenetic protein-2 (BMP-2) to stimulate osteoblast differentiation. Apatite was bio-mimetically synthesized from a well-known Kokubo’s simulated body fluid (SBF), then coated with silica in a Stöber-type silica sol–gel system, and finally dissolved in an acetic solution to yield silica hollow flowers. Analyses of SEM and TEM images show that the resultant silica flowers had a porous and hollow structure due to removal of apatite template by acetic treatment and their shell was constructed by numerous silica nanosheets (∼10 nm in silica shell). A larger specific surface of 890 m2/g was obtained for silica hollow flowers compared to silica-coated apatite due to the presence of porous and hollow structure. Silica hollow flowers had no significant toxicity after incubation with osteoblast MC3T3-E1 cells, indicating a good biocompatibility. They favored adsorption and supported a sustained release behavior of BMP-2. The released BMP-2 was biological active and enhanced osteoblast differentiation with higher ALP activity and larger amount of osteocalcin. The present silica hollow flowers are thus applicable to delivery system in tissue generation.