Article ID Journal Published Year Pages File Type
147925 Chemical Engineering Journal 2014 12 Pages PDF
Abstract

•Sound assisted fluidization has been applied to HKUST-1.•The sound enhances CO2 capture in terms of higher tb, nads, W and adsorption rate.•The obtained HKUST-1 capture capacity is remarkably higher than literature values.•HKUST-1 can be properly regenerated at 150 °C under a vacuum of 50 mbar.•HKUST-1 capture capacity depends on narrow micro-pores (<12 Å).

Among the CCS technologies, adsorption processes are attractive due to their low energy requirements, stimulating recent research to find suitable and highly specific adsorbents for removing CO2 from flue gas. Much attention has been focused on metal–organic frameworks (MOF), a new class of microporous materials that have potential applications in separation processes. As regards the handling of such fine materials, sound-assisted fluidization has been indicated as one of the best technological option to improve the gas–solid contact by promoting a smooth fluidization regime. The present work is focused on the CO2 capture by sound assisted fluidized bed of a specific MOF, HKUST-1. Tests have been performed in a laboratory scale experimental set-up at ambient temperature and pressure, pointing out the effect of sound parameters (intensity and frequency) and CO2 partial pressure. Effectiveness of CO2 adsorption has been assessed in terms of the moles of CO2 adsorbed per unit mass of adsorbent, the breakthrough time, the adsorption rate and the fraction of bed utilized at breakpoint. The results show the capability of the sound in promoting a more efficient adsorption process. Finally experimental tests have been carried out to find a possible regeneration strategy of the sorbent. The stability of the material has been assessed performing different chemico-physical characterizations (BET, XRD, TG, FT-IR and granulometric distribution) on a sample of HKUST-1 subjected to 10 CO2 adsorption/desorption cycles.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,