Article ID Journal Published Year Pages File Type
148863 Chemical Engineering Journal 2013 5 Pages PDF
Abstract

The degradation of 2,4,6-trichlorophenol (TCP) by sulfate radical generated via Co(II)-mediated activation of peroxymonosulfate (PMS) was examined. The influencing factors, such as substrate concentration and pH were investigated. The initial pH and its adjustment orders significantly affected the TCP degradation and mineralization. Several chlorinated products were detected, as well as some carboxylic acids, such as glycolic acid and oxalic acid. Many polychlorinated (chlorine atom number ⩾3) aromatics (e.g. 2,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, 2,3,5,6-tetrachloro-1,4-benzenediol) and even their ring-opening products (e.g. 2,4-dichloro-5-oxo-2-hexenedioic acid, 1,1,3,3-tetrachloro-2-propanone) were identified, indicating a de novo formation mechanism of organohalogens may be involved in TCP degradation. The released chlorine atoms from TCP and/or dichloride radicals activated by sulfate radicals played an important role. This finding may have significant scientific and technical implications for utilizing Co/PMS reagent to detoxify chlorinated pollutants.

► Sulfate radicals can efficiently degrade 2,4,6-trichlorophenol (TCP) in Co/PMS system. ► pH and its adjustment order largely affect TCP degradation kinetics. ► A de novo formation mechanism of polychlorinated compounds was proposed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,