Article ID Journal Published Year Pages File Type
151073 Chemical Engineering Journal 2011 9 Pages PDF
Abstract

Hydrolysis of methyl lactate to lactic acid in a reactive distillation column is widely used in the purification of lactic acid. In this work, optimal operations of conventional and inverted batch reactive distillation columns undergoing the hydrolysis reaction are presented. Minimum time optimisation problem is formulated incorporating a process model within gPROMS software and is solved for different range of lactic acid purity and the amount of product using both columns. For a given column type and configuration the minimum operation time is obtained by optimising the reflux ratio profile. For conventional column, the lactic acid being the heaviest in the reaction mixture, reflux ratio policy plays an important role in removing the light product methanol from the top of the column while ensuring the presence of both reactants in the reaction zone to maximise the conversion to lactic acid. For inverted column, reboil ratio policy plays an important role in removing the lactic acid from the bottom of the column while ensuring the presence of both reactants in the reaction zone to maximise the conversion to lactic acid. For some cases (although limited) it is observed that for low lactic acid product purity the conventional column outperforms the inverted column while for high product purity the inverted column outperforms the conventional column in terms of batch time.

• Conventional and Inverted Batch Distillation columns are used for the study of hydrolysis reaction of methyl lalctate. • For a given task, minimum operation time is obtained using model based optimisation technique. • Choice of the type of batch distillation column is found to be sensitive to product purity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,