Article ID Journal Published Year Pages File Type
153355 Chemical Engineering Journal 2009 9 Pages PDF
Abstract

We report the synthesis and characterization of ZnO nanoparticles prepared via pulse combustion-spray pyrolysis (PC-SP) at a high rate. Instead of using an ultrasonic nebulizer as the atomizer during PC-SP synthesis, a two-fluid nozzle was used to enhance the production rate. A high production rate was achieved by the use of a two-fluid nozzle, which efficiently generated droplets in large quantities, and by controlling the rate of precursor flow. ZnO nanoparticles were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis spectroscopy. The prepared ZnO nanoparticles were spherical and highly crystalline with an average size of 15.6 nm. In addition, high UV-light absorption and visible-light transparency properties were successfully obtained for a dispersion of ZnO nanoparticles in glycerol. The high UV-blocking capacity of the ZnO particle dispersion makes the dispersion potentially useful in cosmetic applications.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,