Article ID Journal Published Year Pages File Type
153562 Chemical Engineering Journal 2009 9 Pages PDF
Abstract

Tars and CH4 generated from biomass gasification processes contribute significantly to the energy content of the producer gas: catalytic tar and CH4 steam reforming allows to clean the gaseous fuel and improve the H2 yield; in addition, the use of a CO2 sorbent minimises carbon oxides. As a result of the whole process, a H2 rich fuel gas may be obtained. This experimental work is addressed to study the practical feasibility of such concepts, choosing CH4, toluene and 1-methyl naphthalene (1-MN) as biomass gasification key primary products. Ni is used as a catalyst for steam reforming, and dolomite as a sorbent for CO2 capture. Two kinds of catalytic systems are tested as bed material: a mixture of dolomite and commercial nickel catalyst, and a new Ni/dolomite combined catalyst and sorbent. The experimental investigations have been carried out in a fixed bed microreactor and a bench scale fluidised bed reactor rig. Both combinations of catalyst and sorbent are found to be very effective in tar removing, with conversion values near to 100% for the compounds tested; simultaneous CO2 sorption reveals itself as the key process step, improving significantly the performance of the catalytic system that may then decrease considerably after sorbent saturation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,