Article ID Journal Published Year Pages File Type
154057 Chemical Engineering Journal 2008 7 Pages PDF
Abstract

Two MCM-41 type, fluorescein-labeled mesoporous silica nanomaterials (MSNs) consisting of spherical and tube-shaped particles were synthesized and characterized. Both materials have hexagonally arranged mesopores with high surface area (>950 m2/g) and a narrow distribution of pore diameters. The cellular uptake efficiency and kinetics of both MSNs were measured in a cancer cell line (CHO) and a noncancerous cell line (fibroblasts) by flow cytometry and fluorescence confocal microscopy. The correlation between the particle morphology and aggregation of MSNs to the effectiveness of cellular uptake was investigated. We envision that our study on the morphology dependent endocytosis of MSNs would lead to future developments of efficient transmembrane nanodevices for intracellular sensing and gene/drug delivery.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,