Article ID Journal Published Year Pages File Type
1721027 Coastal Engineering 2010 11 Pages PDF
Abstract

An unstructured-grid procedure for SWAN is presented. It is a vertex-based, fully implicit, finite difference method which can accommodate unstructured meshes with a high variability in geographic resolution suitable for representing complicated bottom topography in shallow areas and irregular shoreline. The numerical solution is found by means of a point-to-point multi-directional Gauss–Seidel iteration method requiring a number of sweeps through the grid. The approach is stable for any time step while permitting local mesh refinements in areas of interest. A number of applications are shown to verify the correctness and numerical accuracy of the unstructured version of SWAN.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
,