Article ID Journal Published Year Pages File Type
1721222 Coastal Engineering 2010 12 Pages PDF
Abstract

In coastal areas, offshore wave propagation towards the shore is influenced by water depth variations, due to sea bed bathymetry, tides and surges. Considering implications of climate change both on atmospheric forcing and sea level rise, a simple methodology involving numerical modelling is implemented to compute inshore waves from 1960 to 2099. Simulations take into account five scenarios of linear sea level rise and one climatic scenario for storm surges and offshore waves. The methodology is applied to the East Anglia coast (UK). Extreme event analysis is performed to estimate climate change implication on inshore waves and the occurrence of extreme events. It is shown, for this coastal region, that wave statistics are sensitive to the trend in sea level rise, and that the climate change scenario leads to a significant increase of extreme wave heights in the northern part of the domain. For nearshore points, the increase of the mean sea level alters not only extreme wave heights but also the frequency of occurrence of extreme wave conditions.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , , , , ,