Article ID Journal Published Year Pages File Type
1721559 Coastal Engineering 2007 11 Pages PDF
Abstract

The influence of the seaward boundary condition on the internal swash hydrodynamics is investigated. New numerical solutions of the characteristics form of the nonlinear shallow-water equations are presented and applied to describe the swash hydrodynamics forced by breaking wave run-up on a plane beach. The solutions depend on the specification of characteristic variables on the seaward boundary of the swash zone, equivalent to prescribing the flow depth or the flow velocity. It is shown that the analytical solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. J. Fluid Mech. 16, 113–125] is a special case of the many possible solutions that can describe the swash flow, but one that does not appear appropriate for practical application for real waves. The physical significance of the boundary conditions is shown by writing the volume and momentum fluxes in terms of the characteristic variables. Results are presented that illustrate the dependence of internal flow depth and velocity on the boundary condition. This implies that the internal swash hydrodynamics depend on the shape and wavelength of the incident bore, which differs from the hydrodynamic similarity inherent in the analytical solution. A solution appropriate for long bores is compared to laboratory data to illustrate the difference from the analytical solution. The results are important in terms of determining overwash flows, flow forces and sediment dynamics in the run-up zone.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, ,