Article ID Journal Published Year Pages File Type
1721676 Coastal Engineering 2006 19 Pages PDF
Abstract

A newly developed two-phase flow model was applied to simulate the sediment movement under 2nd-order Stokes wave sheetflow conditions with different sediment sizes and wave periods. As for the distribution of eddy viscosity and sediment diffusion coefficient, the difference between onshore and offshore phases was considered by using an equivalent sinusoidal velocity amplitude for the asymmetric velocity profile. Sophisticated comparisons between laboratory measurements [O'Donoghue, T., Wright, S., 2004b. Flow tunnel measurements of velocities and sand flux in oscillatory sheetflow for well-sorted and graded sands. Coast. Eng., 51 (11–12), 1163–1184.] and the present numerical simulation were performed for sediment concentration, sediment velocity, sand flux and net transport rate. Four existing engineering models, together with the present two-phase flow model, were introduced for net transport rate prediction. Taking both the net sand transport rate magnitude and direction into account, the present process-based two-phase flow model provided the best estimations, which can simulate both the onshore net transport for medium/coarse sand cases and offshore net transport for fine sand cases with the agreement by a factor of 2 for almost all the considered cases.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, ,