Article ID Journal Published Year Pages File Type
1856556 Progress in Particle and Nuclear Physics 2014 56 Pages PDF
Abstract

The complex scaling method (CSM) is a useful similarity transformation of the Schrödinger equation, in which bound-state spectra are not changed but continuum spectra are separated into resonant and non-resonant continuum ones. Because the asymptotic wave functions of the separated resonant states are regularized by the CSM, many-body resonances can be obtained by solving an eigenvalue problem with the L2L2 basis functions. Applying this method to a system consisting of a core and valence nucleons, we investigate many-body resonant states in weakly bound nuclei very far from the stability lines. Non-resonant continuum states are also obtained with the discretized eigenvalues on the rotated branch cuts. Using these complex eigenvalues and eigenstates in CSM, we construct the extended completeness relations and Green’s functions to calculate strength functions and breakup cross sections. Various kinds of theoretical calculations and comparisons with experimental data are presented.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, , , ,