Article ID Journal Published Year Pages File Type
1942369 Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012 7 Pages PDF
Abstract

Early onset mitochondrial encephalo-cardiomyopathy due to isolated deficiency of ATP synthase is frequently caused by mutations in TMEM70 gene encoding enzyme-specific ancillary factor. Diminished ATP synthase results in low ATP production, elevated mitochondrial membrane potential and increased ROS production. To test whether the patient cells may react to metabolic disbalance by changes in oxidative phosphorylation system, we performed a quantitative analysis of respiratory chain complexes and intramitochondrial proteases involved in their turnover. SDS- and BN-PAGE Western blot analysis of fibroblasts from 10 patients with TMEM70 317-2A > G homozygous mutation showed a significant 82–89% decrease of ATP synthase and 50–162% increase of respiratory chain complex IV and 22–53% increase of complex III. The content of Lon protease, paraplegin and prohibitins 1 and 2 was not significantly changed. Whole genome expression profiling revealed a generalized upregulation of transcriptional activity, but did not show any consistent changes in mRNA levels of structural subunits, specific assembly factors of respiratory chain complexes, or in regulatory genes of mitochondrial biogenesis which would parallel the protein data. The mtDNA content in patient cells was also not changed. The results indicate involvement of posttranscriptional events in the adaptive regulation of mitochondrial biogenesis that allows for the compensatory increase of respiratory chain complexes III and IV in response to deficiency of ATP synthase.

► Isolated deficiency of ATP synthase causes a severe mitochondrial disease. ► Metabolic disbalance upregulates respiratory chain complexes IV and III. ► Adaptive changes in mitochondrial biogenesis result from posttranscriptional events.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , , , ,