Article ID Journal Published Year Pages File Type
1943508 Biochimica et Biophysica Acta (BBA) - Bioenergetics 2007 7 Pages PDF
Abstract

The green alga Chlamydomonas reinhardtii is a model organism for the study of photosynthesis. The chloroplast ATP synthase is responsible for the synthesis of ATP during photosynthesis. Using genetic engineering and biolistic transformation, a string of eight histidine residues has been inserted into the amino-terminal end of the β subunit of this enzyme in C. reinhardtii. The incorporation of these amino acids did not impact the function of the ATP synthase either in vivo or in vitro and the resulting strain of C. reinhardtii showed normal growth. The addition of these amino acids can be seen through altered gel mobility of the β subunit and the binding of a polyhistidine-specific dye to the subunit. The purified his-tagged CF1 has normal Mg2+-ATPase activity, which can be stimulated by alcohol and detergents and the enzyme remains active while bound to a nickel-coated surface. Potential uses for this tagged enzyme as a biochemical tool are discussed.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , ,