Article ID Journal Published Year Pages File Type
1943563 Biochimica et Biophysica Acta (BBA) - Bioenergetics 2007 7 Pages PDF
Abstract

Chlorophyll (Chl) d is a major chlorophyll in a novel oxygenic prokaryote Acaryochloris marina. Here we first report the redox potential of Chl d in vitro. The oxidation potential of Chl d was + 0.88 V vs. SHE in acetonitrile; the value was higher than that of Chl a (+ 0.81 V) and lower than that of Chl b (+ 0.94 V). The oxidation potential order, Chl b > Chl d > Chl a, can be explained by inductive effect of substituent groups on the conjugated π-electron system on the macrocycle. Corresponding pheophytins showed the same order; Phe b (+ 1.25 V) > Phe d (+ 1.21 V) > Phe a (+ 1.14 V), but the values were significantly higher than those of Chls, which are rationalized in terms of an electron density decrease in the π-system by the replacement of magnesium with more electronegative hydrogen. Consequently, oxidation potential of Chl a was found to be the lowest among Chls and Phes. The results will help us to broaden our views on photosystems in A. marina.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , ,