Article ID Journal Published Year Pages File Type
1971847 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2016 11 Pages PDF
Abstract
A complementary DNA (cDNA) that encodes the vitellogenin receptor (VgR) in the oriental river prawn, Macrobrachium nipponense, was cloned using expressed sequence tag analysis and a rapid amplification of cDNA ends approach. The coding region consists of 5920 base pairs (bp) that encode a 1902 amino acid protein, with a predicted molecular mass of 209 kDa. The coding region is flanked by a 45 bp 5ʹ-untranslated region (UTR) and a 166 bp 3ʹ-UTR. The deduced amino acid sequence of the M. nipponense VgR cDNA had typically conserved domains, such as an extracellular, lipoprotein-binding domain, epidermal growth factor-like and O-glycosylation domains, a transmembrane domain and a short C-terminal, cytosolic tail. Quantitative real-time PCR (qPCR) indicated that Mn-VgR is highly expressed in the female ovary. Expression analysis by qPCR demonstrated the larval and ovarian developmental stage-specific expression pattern. As the ovaries developed, the expression level of Mn-VgR gradually increased during the reproductive cycle (stage I), to reach a peak in stage III. Levels then dropped as a new development cycle was entered after reproduction molting. Eyestalk ablation led to a significant increase in the expression of Mn-VgR during the ovarian development stages (P < 0.05), when compared with the eyestalk-intact group. The investigation revealed that eyestalk ablation initially affected Mn-VgR expression and then influenced vitellogenesis. In adult females, VgR RNA interference (RNAi) dramatically delayed the maturation of the ovary, in accordance with the gonad somatic index. In addition, Mn-VgR RNAi led to vitellin depletion in the oocytes and the accumulation of vitellin in the hepatopancreas.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , ,